
Large-Scale Personalized Delivery for Guaranteed
Display Advertising with Real-Time Pacing

Zhen Fang1∗, Yang Li2∗, Chuanren Liu3∗∗, Wenxiang Zhu1, Yu Zhang1, Wenjun Zhou3∗∗
1 {fangzhen.pt,wenxiang.zwx,daoji}@alibaba-inc.com, Alibaba Group, Hangzhou, China

2 yl837@drexel.edu, Drexel University, Philadelphia. USA
3 {cliu89,wzhou4}@utk.edu, University of Tennessee, Knoxville, USA

Abstract—Guaranteed display (GD) has been a successful
model for display advertising. Existing solutions usually model
GD services as a crowd-level supply allocation problem. This
formulation, however, not only ignores user heterogeneity within
crowds, but also makes it difficult to incorporate individual-
level constraints. In this paper, we present a large-scale system
for personalized delivery in GD advertising services. A unique
contribution is to model the supply allocation problem at the
individual level that accounts for user-ad interactions. Therefore,
our system can conveniently incorporate complex constraints,
such as the priority of GD contracts, the display frequency of
ads, and the effectiveness of ad slots arrangement. Moreover,
we develop a real-time pacing strategy to fulfill GD contracts
with smooth ad delivery and optimized ad performance, such as
cost-per-click (CPC) and cost-per-action (CPA). Our system can
be parallelized to efficiently compute the delivery solution with
billions of decision variables. Using both offline evaluation and
online A/B tests, we demonstrate that our solution outperforms
previous methods in terms of both accuracy and efficiency.

Index Terms—Display Advertising, Guaranteed Display, Sup-
ply Allocation, User Behavior, Large-Scale System.

I. INTRODUCTION

Large-scale display advertising aims to deliver ads to the
target audience under complex constraints. Particularly, guar-
anteed display (GD), which fulfills advertisement contracts
specifying a minimum number of ad impressions, has drawn
much attention in research [5, 24, 6, 8, 23]. Existing solutions
usually model the GD service as a supply allocation problem,
which seeks to meet the demands of multiple contracts with
limited supply [9, 6, 3]. Solving the supply allocation problem
relies on the partition of potential ad audience (i.e., users) into
non-overlapping crowds according to traits (e.g., geographic
location, gender, age) of the audience [26]. However, formu-
lating and solving the GD allocation problem at the crowd
level suffer from several limitations. First, it is notable that the
heterogeneity of individual behaviors in each group of users
prevents the crowd-level supply allocation from delivering ads
to the right users in an accurate manner, which may, in turn,
jeopardize the revenue for the advertisement publishers as well
as the return on investment for advertisers. Second, advertis-
ers may have complex requirements that impose user-level
constraints on the GD allocation. For example, advertisers
can specify the total number of ads to be displayed to any
audience and the number of slots used to display the same ad

∗ Equal contribution ∗∗ Corresponding author

for each arriving audience. As such, GD allocation optimized
on coarse-grained user crowds can have undesirable effects or
inferior performances in practice.

Developing a personalized ad delivery system to address
the limitations of crowd-level GD, however, is non-trivial for
large advertisement publishers. Specifically, there are three
major challenges. First, the scale of user-level GD allocation
depends on the Cartesian product of the supply and the
demand for advertising services, which is prohibitively large.
Consequently, the scale of the allocation problem may reach
billions for large publishers serving thousands of contracts
with various advertisers to millions of active users. Con-
ventional optimization routines face daunting difficulties in
solving the supply allocation problem of such scale. Second,
users are heterogeneous in their interest and behavior patterns.
Therefore, a refined personalized ad allocation plan should
accommodate the diversity in user-ad interactions (e.g., click
on an ad, add the promoted product into wish-lists, and
make a final purchase). Third, GD allocation relies on supply
forecasts but the forecast errors may have non-ignorable effects
on serving ads if we model the GD allocation problem at user
level. In comparison with forecasts of crowd-level user impres-
sions, forecasts based on individual users may exhibit more
uncertainties due to: (1) the randomness of users’ behavior,
and (2) the fact that user-level forecast errors will not cancel
each other out. As a result, we need strategies with real-time
feedback to monitor and control risks (e.g., under delivery)
that may be caused by the forecast errors.

In this paper, we develop an efficient and effective system
to serve GD contracts with personalized delivery at large
scale. Figure 1 illustrates the architecture of our system,
which consists of three subsystems: a Customer Relationship
Management (CRM) module, an offline system, and an on-
line server. The CRM module, as an interface between the
advertisers and the publisher, manages the demand through
GD contracts. Specifically, advertisers can customize their
contracts by imposing requirements such as the target audi-
ences, the number of advertising impressions to show, the
total budget for the contract, and the information type (e.g.,
content/image/video) to display. Given all contract require-
ments, the offline system formulates the allocation problem
that integrates impression forecasts and user-ad interaction
estimates. After that, we compute the optimal allocation plan
in parallel. This personalized allocation plan is then pushed



Parameter 
Server Model Map

User Log 
Aggregator

Ad Request 

Ad

Merger

Dual Variables

User-Ad 
Interaction

Real-Time
Prediction

CRMContract
Information

Build
Graph

Revenue&
flow

estimating

Online
Server

Offline

CRM 

Module

Contract Info

Real-Time
Pacing 

Threshold
User 

Feature

Fig. 1. System for personalized GD allocation.

to the online server that determines which ad to be displayed
to an incoming impression in real time. To smoothly deliver
the ads over the life cycle of contracts, the online server
uses a pacing algorithm to dynamically match high-quality
impressions, indicated by large values of estimated user-ad
interactions (e.g., conversion rates), to the contracts in the
derived allocation plan.

Our contributions can be summarized as follows. First, we
improve the service quality for GD contracts by incorporating
user-ad interactions, i.e., the probability that target users click
on specified ads. Our formulation of the GD allocation prob-
lem is flexible to incorporate a variety of constraints. Second,
we develop a distributed system to solve the large-scale
GD allocation problem. Our system can provide personalized
delivery solutions with billions of decision variables necessary
for large publishers and platforms. Third, we develop a pacing
strategy with real-time feedback to control uncertainty and
risks for serving GD contracts online. While generating a
smooth delivery plan to supply a wide range of audience im-
pressions, our pacing strategy is designed to optimize ad per-
formance by selecting high-quality impressions characterized
by cost-per-click (CPC) and cost-per-action (CPA). Finally,
our system has been evaluated with extensive experiments in
real-world scenarios. The results show that our system can
significantly improve the service quality for large-scale GD
allocation in terms of both effectiveness and efficiency.

The rest of this paper is organized as follows. In Section II,
we review the related work. In Section III, we present our
problem statement. We describe technical details of the large-
scale implementation in Section IV. The experimental setup,
results, and discussions are presented in Section V. Finally,
we conclude our work in Section VI.

II. RELATED WORK

The GD allocation problem, commonly treated as an on-
line matching problem to maximize the amounts of matched
supply and demand, has been extensively studied in the
literature [17, 20, 2, 21]. In their seminal paper, Karp et al.
[17] presented a randomized algorithm to match supply nodes
(i.e., user crowds) with unmatched neighbours in the demand
side on a bipartite graph. To account for the fact that supply
nodes arrive one by one online, Feldman et al. [13], Karande
et al. [16] studied the online matching problem assuming users
are drawn independently from distributions. Later, Devanur
and Hayes [12] introduced the primal-dual framework to solve
the allocation problem. Accordingly, some practical algorithms
have been developed under this framework. For example, Vee
et al. [25] utilized a particular subspace of the dual space
to decide a compact plan for near-optimal online allocations.
Motivated by this idea, Chen et al. [9] proposed the High
Water Mark (HWM) algorithm by allocating an equal fraction
from all eligible user crowds for each GD contract. The HWM
algorithm, although very fast, sacrifices optimality. To improve
the performance of HWM, Bharadwaj et al. [6] designed the
SHALE algorithm by converting optimal dual into a good
primal solution to the GD allocation problem. To account for
contract requirements such as ‘reach’ and ‘frequency’, Hojjat
et al. [14] proposed to use predetermined patterns generated
by a complex heuristic. Recently, Zhang et al. [26] proposed a
consumption minimization model, in which they use a greedy
algorithm to minimize the user traffic satisfying all contract
demands. Those approaches solve the GD allocation problem
at crowd level, which limits their capacity of handling more
fine-grained user-level ads effects and contract requirements.

Another line of related works consider feedback control
aiming to solve the instability problem in real-time display
advertising. Many researchers studied the budget pacing strate-
gies that attempt to allocate ads smoothly throughout the
life cycle of contracts in real-time bidding. The traditional
approach is to use a feedback controller that monitors the
difference between actual and desired allocation and use
it as feedback to control the system dynamically [7, 22].
Zhang et al. [27] developed a similar mechanism called Water
Level (WL) controller for real-time bidding (RTB) systems
to improve the robustness of achieving the advertiser’s key
performance indicators. Different from the feedback controller,
other systems have also been developed. Bhalgat et al. [4]
introduced the online computation of dual variables to reach
a wider range of audience for each contract. Lee et al.
[18] presented an online algorithm which selects high-quality
impressions and adjusts bid price by distributing the budget
across time to improve conversion performance. Agarwal et al.
[1] proposed to smooth budget pacing with traffic patterns.

In this study, we solve the GD allocation problem at user
level instead of crowd level. In this way, fine-grained contract
requirements can be easily incorporated by adding user-level
constraints. To reduce the computational complexity incurred
by the large number of users, we develop a distributed system



that can efficiently optimize large-scale decision variables.
We also develop a real-time feedback process for online GD
allocation to eliminate uncertainties and risks incurred by user-
level supply forecasts, while at the same time select high-
quality impressions intended to improve advertiser experience
and publisher revenue. To the best of our knowledge, our
pacing strategy is the first to consider user-ad interactions and
real-time dynamics in GD allocation problems.

III. PROBLEM STATEMENT

GD advertising is managed through contracts between ad-
vertisers and advertising publishers. The contract specifies the
demanded number of impressions, dj , where j is the index of
the contract. If the publisher cannot meet the demand, there
will be a penalty, pj , for each under-delivered impression. The
publisher who simultaneously serve many contracts will assign
a weight of importance, Vj to the j-th contact, to prioritize the
allocation of contracts.

The advertiser also specifies the target audiences, i.e., users
who will be shown the ads. To this end, the publisher will
group its users into different crowds. The supply si is defined
as the impressions to be served in the i-th crowd.

Users Crowds Contracts

(a) Crowd-level allocation

Users Crowds Contracts

!"#"

!"#"

!"#"

!"#"

(b) User-level allocation

Fig. 2. Users, crowds, and contracts for GD advertising.

It is natural to use a crowd-contract bipartite graph to
describe the relationship between demand and supply as shown
in Figure 2(a). If the j-th contract chooses the i-th crowd
as (part of) its audience, there will be an edge between the
supply node si and the demand node dj . Existing studies solve
the demand-supply allocation problem by determining xij , the
optimal proportion of crowd i allocated to contract j under a
few crowd-level constraints [6, 9].

A. Personalized Allocation in GD Advertising

In reality, crowd-level allocation in GD advertising is insuf-
ficient for several reasons. First, we observe that, even within
the same crowd group, users often exhibit different interests
and behavior patterns. Such fine-grained heterogeneity cannot
be fully exploited in the crowd-level GD allocation framework,
resulting in a less effective allocation plan. Second, it is very
difficult to incorporate user-level constraints (e.g., the total
amounts of ads displayed to any audience and the number of

slots used to show the same ad to an arriving impression) for
crowd-level allocation in a principled manner. The user-level
constraints are necessary to accommodate the sophisticated
requirements imposed by advertisers.

Therefore, we develop a system that delivers personalized
allocation plan in GD advertising by optimizing the problem at
the user level and incorporating user-ad interactions. As shown
in Figure 2(b), an individual user is linked (in dashed lines) to
a contracted ad through a user-crowd bipartite graph that maps
the user to the crowd he belongs to. The edge between user k
and contract j not only indicates that contract j chooses user
k as its target audience but also means that there will be a
score (denoted by ckj) representing the likelihood that user k
will click on the ad of contract j.

The user-level bipartite graph can characterize the actual
process that individual users visit the advertising platform and
view the delivered ad. In particular, note that an individual user
can visit the advertising platform multiple times with each time
being exposed to a number of ads. In other words, for each
specified user k, there will be an rk denoting the total number
of times the user k visits our platform and a nk representing
the number of ads shown to the user each time. As a result,
the total amount of impressions generated by the k-th user
is rknk and the corresponding supply for contract j can be
calculated as Sj =

∑
k∈Z(Γ(j)) rknk.

These detailed aspects allow us to consider user-level con-
straints in GD contracts. For example, to prevent the ad de-
liveries being perceived as intrusive, many advertisers require
that the total number of ads to be displayed to a user cannot
exceed certain times (frequency constraints) [19]. To improve
the effectiveness of display advertising, many advertisers may
also require that the same ad can only be displayed in one of
the available slots for an arriving impression.

To determine the personalized deliveries (in solid lines)
directly between the user and the ads, we need to answer the
following questions: 1) how to model the user-ad interactions?
2) how to integrate the user-ad interactions in the formulation
of GD allocation problem? and 3) how to compute the optimal
solutions efficiently? We address (1) in Section III-B, (2) in
Section III-C, and (3) in Section IV.

B. Modeling User-Ad Interaction

To effectively match potential users to ads, we use a pre-
dictive model to calculate the probability that a user clicks on
a given ad. Three types of features have been considered: (1)
user behavioral features based on records of their interactions
with the advertising platform, such as visits, clicks, and
purchase activities summarized within various time windows;
(2) users’ demographic features, such as age group, gender,
and purchase levels; and (3) brand awareness features by
aggregating brand-specific visits, clicks, and purchases.

Due to its successful applications in prior works [10, 11],
we adopt a deep neural network (DNN) model to predict user-
ad interactions. Once trained with historical behavior records,
our model predicts whether or not a given user clicks after
being exposed to the ad. Although we use users’ click in our



study, our framework is flexible to incorporate other behaviors
(e.g., put items into cart, or make a purchase).

To effectively mitigate the errors in traffic forecasts, we
update the offline optimization with the most recent data
and re-run the model in every hour. Accordingly, we set the
life cycle of a contract as one hour with a pre-determined
budget. To accommodate the update frequency of the offline
optimization, we predict user-ad interactions hourly with the
most recent customer behavior data. We use the area under the
curve (AUC) to evaluate the prediction accuracy of the DNN
model on user-ad interaction for seven consecutive days. As
illustrated in Figure 3, the average AUC of the hourly-updated
model in the test day consistently outperforms that of the daily-
updated model by around 10%. This suggests that the hourly-
updated predictions of user-ad interactions are sufficient to
generate effective personalized allocation plans.

1 2 3 4 5 6 7
Test Day

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

A
U

C

Daily-updated
Hourly-updated

Fig. 3. The performance of hourly/daily-updated model.

In this study, we define user-ad interactions as some specific
actions of a user in response to an ad delivery. For example,
users may click on the ad, put promoted items into their wish
lists, or make a final purchase. Among various types of user-
ad interactions, we maximize users’ clicks in the optimization
for the following reasons: (1) Users’ click is the contracted
performance goal for many advertisers with the aim of raising
brand awareness. For example, some companies would like to
attain a certain amount of attention through GD contracts when
they launch a new product; (2) Some ad publishers also serve
as e-commerce platforms such as Amazon.com or eBay.com
where a large proportion of demand for advertising come
from the merchants (advertisers) on those platforms. These ad
publishers with a dual role may suffer from less competitive
merchants by optimizing alternative users’ actions such as final
purchase in the sense that it reduces merchants’ incentive to
convert clicks into sales [15].

C. Integrated Objective Function

We optimize an allocation plan by balancing three goals:
maximizing representativeness, minimizing penalty, and max-
imizing potential customers. We denote the neighborhood
relationship in the user-crowd bipartite graph by Z(·). That
is, crowd i uses Z(i) to specify the set of desired target
users while user k can find the crowd group he belongs to

using Z(k). With the group of audiences defined, contract j
uses Γ(j) to specify the set of desired target crowds. The
total eligible supply for the contract j is Sj =

∑
i∈Γ(j) si.

Accordingly, we use Γ(i) to represent the set of ads to be
displayed to the i-th crowd. Therefore, we use Γ(Z(k)) to
represent the set of contracts to be served to the k-th user.
Likewise, all users targeted to contract j is Z(Γ(j)).

Users are heterogeneous in terms of user-ad interactions,
and a high-quality user (i.e., a user who is more likely to
click on a given ad as indicated by higher ckj) is desired by all
matched advertisers. Allocating more high-quality users to a
contract than another would jeopardise overall advertiser satis-
faction. We thus attempt to achieve a representative allocation
which consists of the same proportion of impressions from
each user allocated to a contract. Each contract j is associated
with a penalty pj that punishes the under delivery uj , i.e.
the number of impressions delivered less than the contracted
demand dj . We minimize the total penalty

∑
j pjuj and max-

imize the the number of potential user-ad interactions (e.g.,
clicks). For advertisers, the click count measures the number of
potential customers for an ad campaign. For the ad publisher, a
large number of user-ad interactions indicate the relevance and
effectiveness of ad serving to users, which in turn, can improve
the satisfaction of users and advertisers. Taken together, we
consider the following optimization problem:

min
1

2

∑
j,k∈Z(Γ(j))

rknk
Vj
θj

(xkj − θj)2

+
∑
j

pjuj − λ
∑

j,k∈Z(Γ(j))

rknkxkjckj (1)

s.t.
∑

k∈Z(Γ(j))

rknkxkj + uj ≥ dj , ∀j (demands); (2a)

∑
j∈Γ(k)

xkj ≤ 1, ∀k (supplies); (2b)

xkj , uj ≥ 0, ∀k, j (non-negativity constraints); (2c)
rkxkj ≤ fj , ∀k, j (frequency constraints); (2d)
nkxkj ≤ 1, ∀k, j (slot constraints). (2e)

The decision variable xkj is the proportion of impressions
generated by the k-th user of crowd Z(k) that is allocated to
contract j, which can also be interpreted as the probability that
the impressions from the user is allocated to the contract. Here
θj =

dj
Sj

, the ratio between the demand dj and the total desired
supply Sj of the j-th contract, serves as the representative
allocation proportion for users matched to contract j. We
minimize the deviation of the proposed allocation xkj from the
θj using a L2-norm. A weighting scheme is also considered
to account for the relative priority Vj (i.e., a larger value
of Vj means the contract j is more important), the eligible
supply Sj , and the value of θj of each contract. We calculate
the total number of predicted user clicks on contract j as∑
j,k∈Z(Γ(j)) rknkxkjckj .
Constraints (2a) are demand constraints that define the

under delivery as the gap between the contracted demand



and the proposed delivery. Constraints (2b) are supply con-
straints. They guarantee that the total allocated proportion of
impressions should less than one. Constraints (2c) are non-
negative constraints. To leverage the user-level optimization
on a finer scale, we use new constraints that regulate the
serving pattern of each ad to individual users. In specific, we
consider frequency constraints (2d) where the same ad cannot
be displayed to the same user more than fj times; and slot
constraints (2e) where only one slot can be used to display
the same ad in each user visit.

The scale of personalized GD allocation can be extremely
large due to the enormous size of the user-contract bipartite
graph, making it challenging to solve the optimization problem
and allocate ads in real time. In the next section, we develop a
distributed algorithm to accelerate the offline optimization and
a novel feedback control strategy for the online GD services.

IV. LARGE-SCALE IMPLEMENTATION

In this section, we first illustrate our offline algorithm, which
is designed to solve billion-scale allocation problems regularly.
Then, we show our online serving strategy that selects high-
quality impressions by adaptively updating a dynamic thresh-
old for a smooth delivery.

A. Offline Optimization Phase

In the offline phase, we develop a distributed algorithm
that takes advantage of some special properties of the optimal
duals and data structure to solve the billion-scale allocation
problem. Our offline algorithm consists of two stages. In
stage one, optimal duals for personalized ads allocation are
derived using a parameter server with multiple workers. In
stage two, the optimal duals from stage one are converted to
good primal solutions. We optimize the job scheduling for
parallel computation by considering the topological properties
of user-ad pairs in the allocation process. The optimized
job scheduling accelerates the computation and makes the
regular updates of the offline model possible for billion scale
problems. We describe the two stages as follows.

1) Stage One: To derive an optimal allocation plan, we
use duality theory to compute optimal duals for demand
constraints and supply constraints, denoted as α∗j and β∗k ,
respectively, and then convert these optimal duals into good
primal solutions similar to [6]. The challenge is that we have
to solve the optimal duals in an efficient manner that ac-
commodates distributed computing for our integrated objective
function with user-ad interaction.

Specifically, using the Karush-Kuhn-Tucker (KKT) condi-
tions, the values of α∗j and β∗k are derived by solving the
following equations: ∑

k∈Z(Γ(j))

rknkx
∗
kj = dj (3)

and ∑
j∈Γ(Z(k))

x∗kj = 1 (4)

with

x∗kj = min

(
fj
rk
,

1

nk
,max

(
0, θj

(
1 +

α∗j + λckj − β∗k
Vj

)))
.

For our personalized delivery optimization, the computational
costs of solving αj are relatively small compared to that
of solving βk because the number of signed contracts is
usually less than the number of users. Therefore, we resort to
distributed computation using a parameter server with multiple
workers. The αj are updated by the server and the tasks of
calculating βk are assigned to worker nodes.

Our system updates αj using an approximate method in-
stead of solving Equation 3 directly. Specifically, note that
αj are monotonically increasing in the iteration process with
the upper bound αt+1

j ≤ αtj + Vj

(
1− dj(αt)

dj

)
, where αt

refers to the value of α in the t-th iteration and dj(α
t) =∑

k∈Z(Γ(j)) rknkxkj . This allows us to update the value of
αt+1
j using the result of αtj and dj(α

t) from the previous
iteration. Therefore, we compute:

αt+1
j = αtj + lVj

(
1− dj(α

t)

dj

)
, (5)

where l ∈ [0, 1] is the learning rate.

Algorithm 1 Stage One Algorithm
1: function UPDATEBETA . Worker
2: Pull all α from server
3: for k ← 0 to len(Supply) do
4: Update βk with Equation 3 and 4
5: for j ← 0 to len(Γ(Z(k))) do
6: Update xkj with new βk
7: end for
8: end for
9: Push all nkrkxk,j to server

10: end function
11: function UPDATEALPHA . Server
12: Gether all nkrkxk,j from worker
13: for j ← 0 to len(Demand) do
14: for t← 0 to len(Iterations) do
15: Update αt+1

j with Equation 5
16: end for
17: end for
18: Update all αj to worker
19: end function

The corresponding pseudo-code is shown in Algorithm 1
using the aforementioned parameter server. The parameter
server sets initial values for αj and sends the supply data
to the worker nodes, which calculate βk and then push xkj
back to the server. On the worker side, we derive the value
of βk by solving Equation 4. It can be shown the value of∑
j∈Γ(Z(k)) xkj will increase as βk decreases given αj , λ and



ckj . Thus a binary search algorithm1 can be used to find the
solution of Equation 4 with:

βk ∈
[
0,maxj∈Γ(Z(k))(αj + λck,j)

]
.

2) Stage Two: The dual variables calculated in stage one
are nearly optimal for the ad allocation problem. In stage two,
we generate good primal solutions for delivery probability xkj .
To allocate ads to an impression, we first order the contracts
by the eligible supply Sj from smallest to largest. Notice
that in practice, a latter allocated contract may not be able to
reach the fraction of impressions specified by Equation 3 if the
eligible supply is depleted. Therefore, we calculate xkj while
maintaining a fraction of left-over inventory s̃k that cannot be
exceeded. To this end, we introduce a new variable ςj , defined
as the fraction of ad opportunities assigned to the jth contract
in the allocation order, in place of αj in the allocation:∑

k∈Z(Γ(j))

min(s̃k, rknkxkj) = dj (6)

with

xkj = min

(
fj
rk
,

1

nk
,max(0, θj(1 +

ςj + λckj − β∗k
Vj

))

)
,

where β∗k is computed in stage one.
We follow the allocation order to calculate ςj in a sequential

manner, which would incur huge computational costs to fulfill
the daily requirements from thousands of contracts for large ad
publishers. Nevertheless, we observe that, for contracts without
overlapping audiences, we can compute their allocations in
parallel. For example, two contracts targeting users in Beijing
and Shanghai respectively can be parallelized since they do not
compete for the audience. Following this idea, we schedule the
computing jobs as follows. First, we derive the personalized
allocation order of contracts for each user by removing irrele-
vant contracts. Then, we build a directed acyclic graph (DAG)
to capture the contract order for all users. Finally, we schedule
the parallel computation based on the topological order in the
DAG.

A D

G

C

E

GD

B

A

F

H

HF

H

(a) Allocation order for five
users.

A

B

F

E

C

D HG

(b) The DAG of contracts.

A

B
H

C

E

D
F

G

(c) The optimal schedule.

Fig. 4. Job scheduling for parallel computing.

1https://en.wikipedia.org/wiki/Binary search algorithm

Figure 4 gives an example for parallel job scheduling. The
original allocation order for the five users is [A] → [H] with
eight batches shown in Figure 4(a). Then we build the DAG
graph in Figure 4(b) and get the final topological order [A, B]
→ [C, D, E] → [F, G] → [H] in Figure 4(c) with only four
batches, which is just half of the original eight batches.

Therefore, we first compute the optimal schedule of parallel
allocation with the final topological order of the DAG that
includes all contracts. Then, we solve xkj in parallel on the
worker nodes. On the server, we set the initial value of ςj
as α∗j from stage one and update ςj by replacing αj with
ςj in Equation 5. Given values of ckj , dual variables ςj and
β∗k , vector θ, priority vector V , and hyper-parameters λ, we
calculate the delivery probability:

xkj = min(s̃k, xkj),

where s̃k = s̃k − xkj with s̃k = 1 as the initial value of the
available weight for user k. The obtained xkj will be used for
online allocation subject to a dynamic threshold.

B. Online Serving Phase

In previous studies, researchers use a roulette algorithm or
greedy algorithm for GD problems for the online serving.
Specifically, the allocation plan is determined at the beginning
of the campaign using the computed delivery probabilities
xkj together with the impression forecasts. This makes the
performance of both algorithms depend on the accuracy of
impression forecasts, and the corresponding forecast errors
may result in a higher risk of under delivery. To reduce this
risk, we develop a real-time pacing method with dynamic
thresholds to mitigate the uncertainty introduced in the offline
phase and smooth the delivery of impressions during the life
cycle of contracts. In this way, we can take into account the
subtle temporal patterns of the traffic in allocation plan. We
find that the minute-level traffic distribution is quite stable
for a given ad. Therefore, we allocate impressions to ads
at minute level during the life cycle of contracts to reduce
uncertainty. The basic idea of our real-time pacing algorithm
is that the portion of budget spent in every time slot should
commensurate with the traffic distribution. In other words,
we allocate ads to only a fraction of arriving impressions
proportional to the real-time traffic. To achieve this, we adjust
the delivery probability xkj = 0 if the click probability ckj is
below a dynamic threshold δtj .

Specifically, the life cycle of a contract is discretized into T
equal-length time slots and spendjt, for 1 ≤ t ≤ T , denotes
the cumulative of actual spend of contract j from the beginning
of the life cycle till the start of time slot t. The budget we
would like to spend for a contract at time slot t is set to be
proportional to the forecasted volume of traffic during that
time slot. Hence, the allocation of cumulative budget from the
beginning of the life cycle till the start of time slot t is

bjt =

∑τ=t
τ=1 fτ∑τ=T
τ=1 fτ

Bj (7)

https://en.wikipedia.org/wiki/Binary_search_algorithm


where fτ is the forecasted total volume of traffic during time
slot τ and Bj is the total amount of budget for contract j.
Our algorithm finds a threshold δtj for click probability ckj at
time slot t in a way that contracts with low click probability
are dropped from the allocation order. To do so, we construct
an empirical distribution of click probability qtj(x) based on
the historical data for each contract. Then, we adaptively serve
contract j to a fraction ajt of incoming impressions that are
likely to interact with the ad as indicated by higher ckj . The
value of ajt is updated at the start of each time slot by

ajt =

{
ajt−1(1 + η) ∧ 1 if spendjt−1 ≤ bjt
ajt−1(1− η) ∨ 0 if spendjt−1 > bjt

(8)

Here 0 ≤ η ≤ 1 is an adjustment rate which is set at a constant
5% in our study. Once the ajt is updated for time slot t, the
corresponding threshold δtj can be calculated as

δtj = argminx|
∫ 1

x

qtj(x)− ajt| (9)

and contract j will be removed from allocation order if ckj <
δtj . We illustrate the relationship of δtj and atj in Figure 5.

Fig. 5. Threshold selection for online pacing based on user-ad interactions.

We would expect that, on average, the larger the threshold
is, the less budget will be spent in the unit of time for ad
delivering, and vice versa. In an extreme case, a contract
will not be delivered to any user regardless of the delivery
probability if the threshold is one, and thus no budget will
be spent. By doing this, we can adaptively serve ads to high-
quality impressions.

Previous algorithms such as HWM and SHALE allocate
impressions to contracts by ranking contracts based on delivery
probabilities that are derived from traffic forecasts for the
entire life cycle of contracts. Our proposed method is different
from these algorithms in a way that we set a threshold for
each delivery probability in some time interval and optimize
these thresholds dynamically with real-time budget informa-
tion. Moreover, we consider user-ad interactions in the pacing
algorithm that allocates ads to high-quality impressions.

V. EXPERIMENTS

We conduct experiments with real-world data sets from
Taobao, the largest e-commerce website in China, to demon-
strate the effectiveness of our system. When customers use the
Taobao App, contracted ads will be delivered to target audi-
ences via webpage banners or recommendation spots called
“Guess You Like”. In the following, we first demonstrate the
effectiveness and efficiency of our algorithm in solving α and
β in the offline phase. Then, we present the results from online
A/B testing with our system for large-scale personalized ad
delivery with real-time pacing.

A. Offline Phase Evaluation

1) Setup: The offline performance was compared with two
state-of-the-art benchmark algorithms: HWM [9] and SHALE
[6] on an array of supply-demand graphs with different number
of contracts and impressions. The performance metrics include
delivery rate, penalty cost, L2 distance, and average cost per
click (CPC), which are defined as follows.
• The delivery rate is calculated as

D =

∑
j (dj − uj)∑

j dj
, (10)

which represents the delivered impressions as a propor-
tion of the total impressions.

• The penalty cost is the total penalty incurred to the
publisher for being unable to deliver the guaranteed
number of impressions. It is calculated as

P =
∑
j

pjuj . (11)

• The L2 distance measures the weighted deviation of a
generated allocation from a representative allocation as
defined in our objective function

L =
∑

j,k∈Z(Γ(j))

rknk
Vj
θj

(xkj − θj)2. (12)

• The average CPC measures the average cost for adver-
tisers to harvest a click through GD contracts

CPC =

∑
j Bj∑

j

∑
k∈Z(Γ(j)) rknkxkjckj

. (13)

where Bj is the total budget for the j-th contract.
Therefore, lower penalty cost, L2 distance, CPC, and higher
delivery rate are desired. In addition, we also measure the
running time for solving α and β of each job.

2) Performance: As shown in Table I and Figure 6, our
system attains a near 50% improvement of CPC compared
to other methods in various scenarios. By reducing CPC in
half, our system is particularly suitable for GD services with
potentially improved revenue performance for both publishers
and advertisers. Meanwhile, our system achieves similar (or
slightly worse) performance on delivery rate and the cor-
responding penalty cost. Given the benefit from improved
CPC and potential revenue, such loss of delivery might be



TABLE I
THE PERFORMANCE SUMMARY OF DIFFERENT ALGORITHMS WITH DIFFERENT DATA SCALES.

(Demand, Algorithm Performance Metrics Computing Time (in secs)
Supply) Delivery Rate Penalty Cost L2 Distance CPC Solving α Solving β Total

(50, 40000)
HWM 0.528 1.66× 107 1.18× 106 2.99 0.096 0.378 0.474
SHALE 0.530 1.66× 107 1.18× 106 2.97 0.312 1.216 1.528
Our Method 0.525 1.65× 107 1.18× 106 1.59 0.001 0.848 0.849

(35, 100000)
HWM 0.441 7.28× 107 4.50× 107 2.78 0.452 1.140 1.593
SHALE 0.457 7.13× 107 4.48× 107 2.67 2.964 7.941 10.905
Our Method 0.446 7.24× 107 4.54× 107 1.58 0.001 2.604 2.605

(20, 300000)
HWM 0.579 1.89× 107 3.20× 107 3.36 1.593 3.569 5.162
SHALE 0.699 1.40× 107 2.56× 107 3.89 1.607 3.557 5.165
Our Method 0.662 1.41× 107 2.38× 107 1.96 0.001 1.454 1.455

negligible in practice. The ability to deliver representative
allocations does not differ significantly between these methods
as indicated by similar L2 distances.

For the benchmark algorithms, the HWM is the fastest
since it runs only one iteration. However, the performance
of HWM is relatively poor compared to those of the SHALE
and our method. The SHALE slightly outperforms our method
on delivery rate, since we consider a complex object function
with more optimization goals. However, as shown in Figure 6,
the SHALE has a significantly poor performance on CPC
compared to our method.

As aforementioned, the computational bottleneck of the ad
allocation problem is the time of solving α and β. We acceler-
ate the computation of α by parallel job scheduling based on
the topological order in the DAG, and β by using a distributed
computing system with multiple worker nodes. Therefore, our
method greatly reduces the running time to generate an optimal
allocation plan, especially for large datasets.

3) Batch Reduction: We further show the effectiveness of
our parallel algorithm in reducing the number of computation
batches in an array of daily supply-demand scenarios during
one week. First, we generate the original allocation order that
contains all contracts to be served from the supply side and
use OriginBatch to denote the number of batches before
task scheduling. Then, we use our algorithm to customize
eligible contracts for each user and derive the reduced number
of batches ReduceBatch for parallel computing. We use the
metric Speed upRatio = OriginBatch

ReduceBatch to measure the speed-
up ratio of our methods in Table II. Compared to the serial
method used in SHALE, the task reduction using DAG can
effectively accelerate the computation by 14 times.

4) Learning Rate: We investigate the convergence behavior
of our method at different learning rates. Figure 8 shows
that larger learning rates can accelerate the training process.
However, there is a trade-off between optimality and speed.
When the learning rate l is above 1.0, the convergence will
be fast at the beginning but the ultimate delivery rate will
be inferior as compared to the optimal level. In an extreme
situation, if we set the learning rate to a large value, such
as l = 2.0, the performance will deviate far away from the
optimal solution. Our experiments suggest that the optimal
learning rate will land between 0.5 and 0.7.

TABLE II
TASK REDUCTION OF BATCHES IN STAGE TWO.

Supply-demand Origin Reduce Speed-up
Scale Batch Batch Ratio

6.51× 109 6009 458 13.12
5.11× 109 5646 491 11.50
4.22× 109 5467 463 11.81
4.21× 109 5443 442 12.31
4.23× 109 5262 392 13.42
5.36× 109 7089 510 13.90
4.61× 109 5606 357 15.70

5) Parameter Tuning: We test the performance of our
method with different values of λ. Figure 9 shows the effect
of λ on delivery rate and average CPC. We can see that
the average CPC monotonically decreases as λ increases,
suggesting that a larger λ is desired if we want to obtain a
better CPC. It is also notable that the improvement of CPC by
tuning λ is significant when λ is small, but becomes marginal
as λ increases. The delivery rate is weakened as λ increases.
Therefore, we make a trade-off between the average CPC and
the delivery rate such that the delivery rate decreases by 1%
to maintain enough average CPC.

B. Online A/B Testing

We conduct online A/B testing on the Taobao website that
fulfills GD contracts through a mobile app. During seven
consecutive days, we use actual Click-Through-Rate (CTR)
to evaluate the performances of various methods examined in
the A/B testing. To make the treatment groups comparable
to each other, we randomly divide the traffic into equally-
sized streams. We demonstrate the effectiveness of our model
by comparing it with SHALE, the state-of-the-art algorithm
for GD allocation problems. We also compare our model
with an enhanced SHALE model that takes click probability
into consideration in the objective function of the allocation
problem. Besides, a baseline model, which allocates ads to
target audiences by simply ranking those audiences based on
their purchase history, is also included in the comparison.

We first examine the pacing performance during the life
cycle of contracts. Figure 7(a) shows that our proposed method
outperforms all the compared algorithms as indicated by the
smooth accumulation of actual budget spent. The baseline



HWM SHALE Our Method
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
De

liv
er

y 
Ra

te

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

CP
C

Delivery Rate Average CPC

(a) Data scale = (50, 40000)

HWM SHALE Our Method

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
liv

er
y 

Ra
te

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

CP
C

Delivery Rate Average CPC

(b) Data scale = (35, 100000)

HWM SHALE Our Method
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

De
liv

er
y 

Ra
te

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e 

CP
C

Delivery Rate Average CPC

(c) Data scale = (20, 300000)

Fig. 6. The comparison on delivery rate and average CPC.

10 20 30 40 50
Minute

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e 

B
ud

ge
t S

pe
nt

 R
at

e

Ours
Base
SHALE-CLICK
SHALE

(a) Pacing

10 20 30 40 50
Minute

0.75%

0.80%

0.85%

0.90%

0.95%

1.00%

1.05%

1.10%
C
TR

Ours
Base
SHALE-CLICK
SHALE

(b) CTR Curve

Base SHALE-CLICK SHALE Ours
Algorithm

0.50 %

0.60 %

0.70 %

0.80 %

0.90 %

1.00 %

1.10 %

1.20 %

1.30 %

C
TR

+11.23 %

+1.21 %

+22.72 %

(c) CTR

Fig. 7. Comparisons of different methods.

0 20 40 60 80 100
Iteration

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

D
el

iv
er

y 
R

at
e

l=0.1
l=0.5
l=0.7
l=0.9
l=1.1
l=2.0

Fig. 8. The learning rate curve.

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 C
PC

0 200 400 600 800 1000 1200 1400 1600
λ

0.52

0.53

0.54

0.55

0.56

0.57

0.58

D
el

iv
er

y 
R

at
e

Delivery Rate
Average CPC

Fig. 9. Sensitivity of parameter λ.

model has the worst performance as it spends more than half
of the entire budget in the first few minutes. The SHALE and
the SHALE-CLICK perform better than the baseline model
because they use an offline greedy algorithm for budget pacing.
Our method makes further improvement in budget pacing with
a real-time feedback control strategy.

Figure 7(b) shows the time series of average cumulative
CTR of display ads using different algorithms. The SHALE-
CLICK achieves a higher CTR compared to the baseline model
and the SHALE by considering user-ad interactions in the
offline optimization. Our method outperforms the SHALE by
considering user-ad interactions in both offline optimization
and online serving. The high CTR obtained by our method
attenuates the cost for advertisers to harvest profitable clicks
on their advertisements.

The bar plot in Figure 7(c) shows that the overall user con-
version performance of our method has a relative increase of
22.7% against the baseline model, 21.2% against the SHALE
and 10.6% against the SHALE-CLICK. We place error bars to
represent 95% confidence intervals. T-tests indicate that these
improvements are significant.

It is worthy of note that the proposed online pacing strategy
needs a warm-up stage for threshold adjustments to match the
traffic distribution in the first few minutes. This may lead to
a marginal improvement of CTR at the beginning of the life
cycle of the contract. As our method learns more about the
contracts, the thresholds are updated to more accurate values
and the performance of our model boosts accordingly.



VI. CONCLUSION

We present a large-scale system for personalized delivery of
display advertising. We incorporate user-ad interactions in the
allocation problem with complex constraints and then develop
distributed algorithms to solve the optimization problem. Our
real-time serving strategy supports budget pacing by control-
ling the risk of under delivery of the demanded ad impressions.
Extensive experiments demonstrate the effectiveness and ef-
ficiency of our system. To the best of our knowledge, our
advertisement serving system is the first to support the user-
level impression allocation and the budget pacing in real time.

REFERENCES

[1] Deepak Agarwal, Souvik Ghosh, Kai Wei, and Siyu
You. Budget pacing for targeted online advertisements
at linkedin. In KDD’14, pages 1613–1619, 2014.

[2] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A dynamic
near-optimal algorithm for online linear programming.
Operations Research, 62(4):876–890, 2014.

[3] Saeed Alaei, Esteban Arcaute, Samir Khuller, Wenjing
Ma, Azarakhsh Malekian, and John Tomlin. Online
allocation of display advertisements subject to advanced
sales contracts. In ADKDD’09, pages 69–77, 2009.

[4] Anand Bhalgat, Jon Feldman, and Vahab Mirrokni. On-
line allocation of display ads with smooth delivery. In
KDD’12, pages 1213–1221, 2012.

[5] Vijay Bharadwaj, Wenjing Ma, Michael Schwarz, Jayavel
Shanmugasundaram, Erik Vee, Jack Xie, and Jian Yang.
Pricing guaranteed contracts in online display advertis-
ing. In CIKM’10, pages 399–408, 2010.

[6] Vijay Bharadwaj, Peiji Chen, Wenjing Ma, Chan-
drashekhar Nagarajan, John Tomlin, Sergei Vassilvitskii,
Erik Vee, and Jian Yang. Shale: An efficient algorithm for
allocation of guaranteed display advertising. In KDD’12,
pages 1195–1203, 2012.

[7] Shankar P Bhattacharyya and Lee H Keel. Robust
control: the parametric approach. In Advances in Control
Education 1994, pages 49–52. Elsevier, 1995.

[8] Bowei Chen, Shuai Yuan, and Jun Wang. A dynamic
pricing model for unifying programmatic guarantee and
real-time bidding in display advertising. In ADKDD’14,
pages 1:1–1:9, 2014.

[9] Peiji Chen, Wenjing Ma, Srinath Mandalapu,
Chandrashekhar Nagarjan, Jayavel Shanmugasundaram,
Sergei Vassilvitskii, Erik Vee, Manfai Yu, and Jason
Zien. Ad serving using a compact allocation plan. In
EC’12, pages 319–336, 2012.

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,
Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu,
and Hemal Shah. Wide & deep learning for recommender
systems. In DLRS’16, pages 7–10, 2016.

[11] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Rec-
Sys’16, pages 191–198, 2016.

[12] Nikhil R. Devanur and Thomas P. Hayes. The adwords
problem: Online keyword matching with budgeted bid-
ders under random permutations. In EC’09, pages 71–78,
2009.

[13] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and
S Muthukrishnan. Online stochastic matching: Beating
1− 1/e. In FOCS’09, pages 117–126, 2009.

[14] S Ali Hojjat, John Turner, Suleyman Cetintas, and Jian
Yang. Delivering guaranteed display ads under reach and
frequency requirements. In AAAI’14, pages 2278–2284,
2014.

[15] Yu Hu, Jiwoong Shin, and Zhulei Tang. Incentive prob-
lems in performance-based online advertising pricing:
Cost per click vs. cost per action. Management Science,
62(7):2022–2038, 2015.

[16] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi.
Online bipartite matching with unknown distributions. In
STOC’11, pages 587–596, 2011.

[17] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An
optimal algorithm for on-line bipartite matching. In
STOC’90, pages 352–358, 1990.

[18] Kuang-Chih Lee, Ali Jalali, and Ali Dasdan. Real time
bid optimization with smooth budget delivery in online
advertising. In ADKDD’13, 2013.

[19] Hairong Li, Steven M Edwards, and Joo-Hyun Lee.
Measuring the intrusiveness of advertisements: Scale
development and validation. Journal of Advertising, 31
(2):37–47, 2002.

[20] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay
Vazirani. Adwords and generalized online matching. J.
ACM, 54(5), 2007.

[21] Vahab S. Mirrokni, Shayan Oveis Gharan, and Morteza
Zadimoghaddam. Simultaneous approximations for ad-
versarial and stochastic online budgeted allocation. In
SODA’12, pages 1690–1701, 2012.

[22] Daniel E Rivera, Manfred Morari, and Sigurd Skogestad.
Internal model control: Pid controller design. Industrial
& Engineering Chemistry Process Design and Develop-
ment, 25(1):252–265, 1986.

[23] H. Shen, Y. Li, and Y. Chen. Robust ad delivery plan
for guaranteed display advertising. In ICIA’14, pages
1125–1130, 2014.

[24] John Turner. The planning of guaranteed targeted display
advertising. Operations Research, 60(1):18–33, 2012.

[25] Erik Vee, Sergei Vassilvitskii, and Jayavel Shanmuga-
sundaram. Optimal online assignment with forecasts. In
EC’10, pages 109–118, 2010.

[26] Jia Zhang, Zheng Wang, Qian Li, Jialin Zhang, Yanyan
Lan, Qiang Li, and Xiaoming Sun. Efficient delivery
policy to minimize user traffic consumption in guaranteed
advertising. In AAAI’17, pages 252–258, 2017.

[27] Weinan Zhang, Yifei Rong, Jun Wang, Tianchi Zhu, and
Xiaofan Wang. Feedback control of real-time display
advertising. In WSDM’16, pages 407–416, 2016.


	Introduction
	Related Work
	Problem Statement
	Personalized Allocation in GD Advertising
	Modeling User-Ad Interaction
	Integrated Objective Function

	Large-Scale Implementation
	Offline Optimization Phase
	Stage One
	Stage Two

	Online Serving Phase

	EXPERIMENTS
	Offline Phase Evaluation
	Setup
	Performance
	Batch Reduction
	Learning Rate
	Parameter Tuning

	Online A/B Testing

	Conclusion

